

Today's Learning Goals:

- Provide geometric proof of the Pythagorean Theorem.
- Use the Pythagorean Theorem to find missing side lengths of right triangles.
- Solve real-life problems.

Kinds of Numbers

Natural Numbers

Whole Numbers

Integers

positive or negative whole number, including zero.

Rational Number

a number that can be written as a _____.

Rational Numbers

- You CAN change the number into a fraction
- It is a terminating decimal
- It is a nonterminating AND repeating decimal
- You CAN find the PERFECT square root of it

Example 2

Terminating Decimal - When the division stops.

<u>Repeating Decimal</u> - When the last digit of the division repeats over and over, we use repeating decimal bars...

Both terminating and repeating decimals are RATIONAL

Write the decimal as a fraction. Simplify the fraction if possible.

a) 0.02 b) 0.105 c) -2.048

Example 3

If a decimal does not terminate and it doesn't repeat, it is <u>IRRATIONAL</u>.

Which is NOT a rational number?

a)
$$-\sqrt{32.8}$$
 c) $1\frac{1}{4}$

b)
$$-0.48$$
 d) $-\frac{2}{3}$

Example 5

-1

Order these numbers from least to greatest:

Classify the real number.

1.	0.121221222	2.	$-\sqrt{196}$	3. $\sqrt[3]{2}$

Roots Review

Perfect Roots that you should memorize

Approximating Square Roots

Example 1

Estimate $\sqrt{71}$ to the nearest (a) integer and (b) tenth.

Approximating Square Roots

Example 2

Estimate $\sqrt{23}$ to the nearest (a) integer and (b) tenth.

Approximating Square Roots

Example 3

Estimate the square root to the nearest	(a) integer and (b) tenth.
---	----------------------------

4.	$\sqrt{8}$	5. $-\sqrt{13}$	6. $-\sqrt{24}$	7. $\sqrt{110}$

Approximating Square Roots

Example 3

Estimate the square root to the nearest (a) integer and (b) tenth.

4. $\sqrt{8}$ **5.** $-\sqrt{13}$ **6.** $-\sqrt{24}$ **7.** $\sqrt{110}$

Approximating Square Roots

Example 3

Estimate the square root to the nearest (a) integer and (b) tenth. **4.** $\sqrt{8}$ **5.** $-\sqrt{13}$ **6.** $-\sqrt{24}$ **7.** $\sqrt{110}$

Approximating Square Roots

Example 3

Estimate the square root to the nearest (a) integer and (b) tenth. 4. $\sqrt{8}$ 5. $-\sqrt{13}$ 6. $-\sqrt{24}$ 7. $\sqrt{110}$

Approximating Square Roots

Example 4

Which is greater, $\sqrt{5}$ or $2\frac{2}{3}$?

Approximating Square Roots

Example 5

Which is greater, $\sqrt{0.49}$ or 0.71?